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General Linear Models:

An Integrated Approach to Statistics
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University of Ottawa

Sylvain Chartier

Generally, in psychology, the various statistical analyses are taught independently
from each other. As a consequence, students struggle to learn new statistical analyses,
in contexts that differ from their textbooks. This paper gives a short introduction to the
general linear model (GLM), in which it is showed that ANOVA (one-way, factorial,
repeated measure and analysis of covariance) is simply a multiple
correlation/regression analysis (MCRA). Generalizations to other cases, such as
multivariate and nonlinear analysis, are also discussed. It can easily be shown that
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every popular linear analysis can be derived from understanding MCRA.

The most commonly used statistical analyses are
ANOVA, t-tests, and regressions (Cousineau, 2005). These
are taught as independent modules during the training of
psychology which their
knowledge into pieces that seem different and disconnected

students, sadly fragments

from one another. Multivariate statistic books are no
stranger to this practice (e.g. Howell, 2002; Shavelson, 1996;
Stevens, 1992; Tabachnick & Fidell, 2001) — the vast majority
give only a very brief introduction to the subject. This is
even worse in univariate books, in which even such cursory
treatment is lacking. With this is combined with the fact that
mathematical reasoning is not a priority in most psychology
curricula (Giguere, Hélie, & Cousineau, 2004), the net result
is a general misunderstanding of statistics among many
students of social science.

In addition, more time is devoted to using how-to-do-it
computer tools (due to their accessibility and user-friendly
interfaces), and less time is spent on understanding the
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concepts — which is absolutely necessary to do any work in
research. According to Tatsuoka (1988):

“... much is to be gained by the student’s going

through the calculations by hand ... Students who

have undergone this sort of learning experience will

be more likely to develop a thorough understanding

of the major steps involved in a sequence of

computation than will those who, from the outset,

leave all the “busy work” to the computer.”
Consequently, after their mandatory courses, students still
usually have difficulties choosing the correct statistical test
for their data. A student who masters software does not
indicate his comprehension — all he/she shows is a bit of
technical competence.

Although most psychology teachers know that ANOVA
and regression are linked through the general linear model
(GLM), few actually teach it in their courses. GLM offers a
unique pedagogical perspective to provide such a unified
view of statistical testing. To provide a more detailed
explanation, it will be shown that ANOVA - as well as the #-
test - are simply special cases of multiple
correlation/regression analysis (MCRA). Table 1 shows the
different analyses that can be derived from MCRA given the
number of independent variables (IV), and the number of
dependant variables (DV). Therefore, if the IV is nominal
and there is only one continuous DV, the ANOVA is a

special case of MCRA. Thus, a general framework can be
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Table 1. Univariate and multivariate representations of the GLM.

DV Form 1V Form Type of analysis
1 nominal 1 nominal Phi coefficient /
Chi-square
1 continuous 1 nominal t-test
5 1 nominal >1 continuous and/or Logistic regression /
O nominal Discriminant function
£ 1 continuous 1 continuous Simple correlation / regression
g
= 1 continuous >2 nominal ANOVA
= (one-way, factorial, repeated measure)
1 continuous X2 continuous and ANCOVA
nominal
1 continuous 2] continuous Multiple correlation / regression
>2 nominal >2 nominal Correspondence
>2 nominal >  continuous and/or  Multivariate logistic regression / Discriminant
nominal functions
E >2 continuous > nominal MANOVA
O
% >2 continuous >1 latent Principal component / Factor
8
§ =2 continuous 21 latent Multidimensional scaling
§ and/or nominal
>2 continuous >1 continuous and/or Structural equation modeling
and/or latent latent
>2 continuous > continuous Canonical correlation

Note: DV, dependent variable, IV, independent variable
taught in which statistical methods are viewed as a whole,
which would facilitate their comprehension and application.
However, to really understand statistical analysis, linear
algebra must be used, which, paradoxically, is not part of
the mandatory psychology curriculum in many universities.
This once again reinforces the disadvantage that psychology
students (unwittingly) endure in their training, compared to
other sciences (Giguere, Hélie, & Cousineau, 2004). While is
should be noted that linear algebra is briefly introduced in
some multivariate statistics books (e.g. Tabachnick & Fidell,
2001; Tatsuoka, 1988), far stronger material is found in books
about linear algebra itself (e.g. Lipschutz & Lipson, 2001;
Strang, 1988).

The information in this paper is primarily a synthesis of
knowledge first presented in Cohen & Cohen (1983),
Tatsuoka (1988), Kutner, Nachtsheim, Neter, & Li (2005),
and Morrison (1976), and it is mainly divided into three
parts. The first shows that when using MCRA or any kind of

ANOVA (repeated, one-way, factorial, covariance), the same
three steps are always involved: compute the appropriate
coding matrix, create the SSCP matrix, and calculate the R-
squared. More precisely, a description and review of
(MCRA)
correlation/regression  analysis (SCRA) is provided.
Subsequently, ANOVA, factorial ANOVA, and repeated-
measures are presented as special cases of MCRA, in that

multiple correlation analysis and simple

order. The second part of the paper asserts the various links
between MCRA and ANOVA with some numerical
examples using one-way ANOVA and repeated-measures
ANOVA. The final section discusses the multivariate case
and nonlinear analysis (the generalized linear model).

Multiple Correlation/Regression Analysis

The purpose of MCRA is to determine the strength of
correlation between a criterion (the dependent variable) and

multiple predictors (the independent variables). If a



functional relationship is desired, then multiple regression
analysis can be performed.

Sum of square and cross product (SSCP) matrix and the R-
squared

Different variables can be expressed, using standard
matrix notations, as follows. The predictor variables are

defined as:
Xyg Xy o oo le
X X X
21 X2 2
X=|"2 7 S 1)
Xip Xn2 o0 an

Y=l )

Yn
where X is matrix of dimension nxp, y a matrix (vector) of
Ixn and, n and p are the number of participants and
predictors, respectively. These two matrices can be put into
a single matrix :

X Xy oo X1p Y1
X Y2

®)

Xn2 an yn

where xij represents the j predictor of the i™" participant, yi
the criterion of the i participant. From the M matrix, the
sum of squares and cross product (SSCP) matrix can be
computed. Useful information such as the variance,
covariance, and R-squared can also be extracted from the
SSCP matrix, which is obtained by:
SSCP = (M -M)" (M - M)

=M"M-M"M 4)

=M'M-(@1"M)"(1"M)/n
where 1 is defined as a vector (of dimension #) in which all
elements are equal to 1, M is a means-score matrix (of
dimension n x p+1) where the mean of each column is
repeated over n lines, and T denotes the matrix transpose
operation. If the SSCP is divided by the corresponding
degrees of freedom (n-1), then the variance/covariance
matrix is obtained. Thus, the SSCP is a convenient way to
represent a lot of information about variability in a single
matrix. Naturally, the same can be found for SCRA using
Equation 4. In that case, the matrix will be reduced to a 2 by
2 format. The element found at the junction of the first row
and the first column will be used to estimate the variance of
the predictor, the elements at the junction of the first row
and second column will be used to estimate the covariance
(this information is also available at the junction of the
second row and the first column), and the element at the
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junction of the second row and second column will be used
to estimate the criterion variance:

SR 00 )

;(yi ~Y)(%—%) | ;(yi -y)°

= R

where X and y represent the mean of the predictors and of
the criterion, respectively.

By partitioning the SSCP matrix correctly, the coefficient
of determination - R-squared (R?) - can be obtained. This is
done by dividing the SSCP into four sectors, which we
name Sy, Spe, Sop, See. These are (in order), the sum of squares
of the predictors alone, the sum of cross-products between
the predictors and the criterion, the sum of cross-products
between the criterion and the predictors (note that S = Sp.cT),
and finally the sum of squares of the criterion alone.

Spo | Soc
sscp=| i P2 ©)
Sep ! Sec

Once this is drawn up, the coefficient of determination
(0LR<1) can be obtained with the following matrix
multiplication:

R*=S515,,5,5. )
In the particular case of SCRA, each element of the SSCP
matrix is a scalar, and thus the R? will also be a scalar. It is

given by the following:
n n -1
Ricrn = Z(Yi -V - X)[Z(Xi - X)zj
= in1

35003009 20097 ®

Equation 8 is the standard way to obtain the coefficient of
determination. If the standard bivariate correlation (Rscra) is
desired, then one must find the square root of R?scra, as
found by equation 8, which must then be multiplied by the
sign (+ or -) of Sy (direction of the covariance).

For an unbiased estimate of R? (R?), the following
correction must be applied:
(1-R*)(n-1)

(n-p-1)

This is called the shrunken R-squared, or the adjusted R-

R®=1- )

squared.

Partial and semipartial coefficients

Unlike SCRA, defining the contribution of each predictor
in MCRA is not straightforward. To illustrate the different
ways that those relations can be computed, a Venn diagram



is used. This is illustrated in Figure 1a as an example with
two predictors, in which R? is the sum of a, b and c areas.
The total variation (Y) is equal to 1 (atb+cte = 1). The
relationship between each predictor and the criterion can be
expressed by taking only the area “a” for the first predictor
and the area “b” for the second predictor, which is formally
expressed by:

2 2
a=R*-r, =a+b+c-(b+c) (10a)
and:
b=R*-r} =a+b+c—(a+c) (10b)
where r; and r; represent the bivariate squared

correlation between the criterion and a given predictor (x1 or
x2). Thus, those areas represent the proportion of variation
that uniquely overlaps the criterion, which is called the
squared semi-partial correlation. The general formula for p
predictors is given by:

2 2 2
st? =R’ R},

(11)
where R} is the strength of association between all the
predictors except the i predictor. Another way to express
the relationship between each predictor and the criterion is
to compute the ratio of a/(at+e) for the first predictor and
b/(b+e) for the second predictor. This is expressed by:
a R-r. atb+c—(b+c)
a+e 1-r2  1-(b+c)

(12a)

and:
b R°-r, a+b+c—(a+c)
bre 1-r 1-(a+c)

(12b)

Figure 1. Venn diagrams for a) two predictors, b) one-way
analysis of variance, c) two-way ANOVA and d) repeated
measures.
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This relationship is called the squared partial correlation.
The general formula for p predictors is expressed by:
R* - R(2i> _sK?

= 2 2
1-Ry 1Ry

2

pr

13)

Thus, the squared partial correlation is the proportion of the
criterion variance that is independent of the remaining
predictors (1- R, ), which is accounted for uniquely by xi.

Significance test

Before introducing analyses of variance using MCRA,
one must perform a significance test. This is done by using
Fisher distribution, based around finding on the F value,
which is obtained with the following equation:
T _R(n-p-1)

R @-RY)p

n-p-1

F=

(14)

with df =p and n-p-1.

This can be viewed as a ratio of explained variation in
relation to the unexplained variation balanced by their
respective degrees of freedom. Note that in the case of
SCRA, the F ratio can be reduced to a simple ¢-test (t= JF,
df =n-2).

Significance testing can also be applied to partial and
semi-partial coefficients. The formula used is the same as
Equation 14, the only difference resides in the corresponding
degrees of freedom. Since semi-partial and partial
coefficients are mathematically linked (as can be seen in
Equation 13), they will give the same outcome. Thus, in the

case of semi-partial coefficients, the F value is obtained by:

S,
Al _(sr)n—p-1 )
A (1-R?%
n-p-1

Regression coefficients

Finally, if a functional linear relationship is desired,
then a multiple regression equation must be used. This
relationship is expressed by:

Y =Dby +bx +bx, +...+b X, (16)

or:
9 =b, +Xb 17)

or:
y=X'b* (18)

where bi represents the regression weights, y the criterion
vector, b the regression weights without the constant (bo),
b* the regression weights including the constant, X the
predictor matrix (Equation 1) and X" the predictor matrix
including the unit vector (1) in the first column. The
regression weights (bi) can be obtained by:

b = (X+TX+)—1X+Ty 1)

This is the general solution for any number of predictors.



Moreover, for the special case of simple regression analysis,
it can be directly shown that Equation 21 reduces to the
standard form for b1:

. SN0 ooy
= =,
Z(Xi _X)z K .

where Covx represents the covariance between the criterion

22)

and the predictor, r, represents the bivariate correlation,
and sy and sx represent the standard deviation for the
criterion and the predictor respectively. Equation 21 can also
be reduced to the following form for bo:

by =y -bX (23)
Note that the regression weights without the constant (b)
can be obtained from the partitioned SSCP matrix as well:

b=S,S, (24)

Therefore, Equation 22 is simply a special case for bivariate
relationships (shown in Equation 24). To find the constant,
generalization of Equation 23 is used, which gives:

b,=Y-X'b (25)
These are all of the MCRA concepts needed for ANOVA.
Now, in order to complete the picture, ANOVA will be
examined under the MCRA perspective.

One-Way ANOVA

In ANOVA, each subject’s score is based on the
following equation:

Vi =H+T; T8 (26)
where yi represents the score of the ith participant in the j®
group, u the grand population mean, 7 the treatment
applied to the j group, and ej the error associated with the
i" participant in the jth group. This function can be translated
into MCRA as:

y=Xb"+e (27)
where, for example, b* =[u,7,7,,...7,,]", X* the predictor
matrix obtained from a coding matrix, and k the number of
groups.

The hardest part of linking MCRA to ANOVA is in

Table 2. Various types of coding matrices
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creating the coding matrix (X) correctly. There are different
coding matrices: effect, contrast, dummy, and even nonsense
coding. They all give the same global significance test, but
the choice of one coding matrix over another varies
according to the research hypothesis, and the correct matrix
must be chosen for results to be meaningful. For this reason,
coding matrices encourage researchers to develop well
formed hypotheses from the start.

Dummy coding

A dummy coding matrix (defined in the first column of
Table 2) has to be designed in such a way that all the
information belonging to a particular group is coded in a 1/0
dichotomy. Thus, for every subject, this coding will be
applied. This will give a predictor matrix (Equation 1) of
dimension (nxk-1) - see the numerical example section for
more details. Note that there is no xx in the table, as that
entry would be redundant — it can be entirely determined by
the other columns. Using that coding matrix, if the
regression weights (b*) are computed according to Equation
21, the following solution will be obtained:

b+:[Yk X=X X=X - ik—l_ik]-r (28)
The last regression coefficient, bx, can be obtained from the
previous other coefficient (without the constant), using:
b,=Xb=X%X-X =0 (29)
In this case, its value is zero. Equation 28 tells us that the
constant (bo) will represent the mean of the last group (X, ).
Every other regression coefficient (by, b, ..., bx) will compare
its respective mean with the last group. Thus, this coding is
used when a researcher wants to compare every group to a
reference group. A classic example would be to compare
different treatments with a control condition.

Effect Coding

The difference between effect and dummy coding is that
instead of identifying the last group with all 0s, we use all
-1s. This is illustrated in Table 2 (second column). When
equation 21 is used to compute the regression coefficients

Dummy variable coding Effect variable coding Contrast variable coding
Group | X, X, - X, Group | X, X, X, 4 Group | X X, X 1
g, 1 0 -~ O o} 1 0 0 g 1 G S
g, o 1 - 0 9, 0 1 0 g, a,, &, a,,
91 0 0 91 0 0 1 1 [ & FHae 7 Egka
*h o 0 - 0 O -1 -1 -1 Ok A K A k1




with effect coding, the following results are obtained:
b =[X %X %-X - %,-X| (30)
Once again, the last coefficient can be computed from b and
X, which will give:
h,=Xb=X -X (31)
Thus, when effect coding is used, the constant (bx)
represents the unweighted grand mean (X ). Every other
coefficient is compared to this grand mean. In other words,
each b’s coefficient will give an estimation of the treatment
effect ().

Contrast Coding

The last coding strategy presented is the orthogonal
contrast, which is a generalization of effect coding. Contrast
coding in the context of regression analysis has only one
difference from contrast coding for a priori testing in
ANOVA, which is that each contrast within the coding
matrix must be orthogonal and the entire k-1 contrast must
be represented in the coding matrix. The contrast coding
matrix is illustrated in Table 2 (third column).

A contrast is defined as:

Cj:aijy1+a2jy2+"'+akjyk (32)
where a;j (i.e. aij) are the elements of the coding coefficient. In
addition, the contrasts must satisfy the following conditions:

1) a; +a,; +..+a,;, =0 (null hypothesis)

2) j=k-1 (linear independence and full matrix coding
requirement)

3) a/a, =0, i#i (orthogonal requirement)

If the regression coefficients are computed using Equation
21, it will give the following result
= ax ax

+ _
b* =] X T T

a8, 8,8,

a; X
ZeaX
ak —lak -1

(33)

where aj represents the column vector of the contrast coding
(Table 2) and X the mean vector of the group. Once again,
the last coefficient can be computed from b and X, which

will give:
T
b, = Xb = X
a,a,

(34)

Thus, for contrast coding, the constant represents the
unweighted grand mean (X ), and all other coefficients are
the weight normalization of the contrast comparison.

Linking ANOVA and MCRA

This section will show that whether ANOVA or MCRA
is performed, the same results will be found in terms of
variance evaluation. First, it will be shown that the total sum
of squares of ANOVA is equivalent to Se. Second, it will be
shown that the error variation (SSw) of ANOVA is the same
as the unexplained regression variation (Sc«(1-R?)) that
MCRA finds.
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ANOVA is based on the following equation:
Y =H+T e (35)
The y;j data are presented in Table 3. The grand mean is

obtained the usual way:

nj

§:Zklzy“’

j=1i=1

(36)

With very few manipulations, it can be shown from
Equation 35 that the total sum of squares (SSr) can be
partitioned in two: the between-groups sum of square (SSs)

and the within-groups (error) sum of squares (SSw):

Kk Mj k Kk Nj
zz(yij_§)2:znj(yj_§)2+22(yij_§)z (37)
=1 -1 -1 i=1i-1

To show this, Equation 35 must be rewritten in terms of
parameter estimation, as follows:
Vi =Y+, =Y+, -Y) (38)

If the results are centered (the mean is removed), Equation

37 becomes:
¥ =N ==+, -Y) 39)
Squaring both sides, we obtain:
(yij _§)2 :(yj _§)2+(yj _§)2+2(y1‘ _§)(y, _?) (40)

If we sum this expression for all values of i and j, then
Equation 40 becomes:

nj

Zk:Z(Yij _§)2 :Zk:_

nj
j=1i=1 j=li=1

nj

j=1i=1 j=li=1

nj

K _ K
:znj(yj _y)z +z
-1 =

J n;
Since Z(Vj —Y) is zero, then the third term of the right will
be zerd and results will be the same as the one expressed at

0 -P X0 -DEG D @

Equation 37.

To show that in the case of MCRA identical partitioning
of the sum of squares occurs, the same procedure is applied
(shown previously for ANOVA). Thus, if we centered
Equation 27 we obtain:

y-y=Xb" +e-y (42)
If we square both sides, the result is:
(y-y)* =(Xb" +e-y)*
= +e-y)
=({+e-y)'(y+e-y) (43)

=9 9+9e-9y+e'y+ee
—-€'y-y'y-Ye+y'y
Since the error is orthogonal to the predicted value of X*b*,
their scalar product (covariance) will be zero. Moreover,
sincey =Xb", the scalar product between e and y will also
be zero. Therefore, Equation 43 can be reduced to:

T, -9+ 2 0~ 7+ XD - D, )



(Y-9)=99-9y+ee-yy+y'y
=979 -29'y+y'y +e'e
=(y-y) +e'e
=¥ -y’ +(y-Xb) (y-X'b")
=(-9+y-9)° (44a)
i W@(yi—w (44b)

If all columns (group) of Table 3 are aggregated to form a
single vector (Equation 2), then the average of this vector
will be the same as that expressed in Equation 36.
Consequently, the sums of squares of Equations 37 and 44b
are equivalent. In other words, the total sum of squares is
the Scc given by the SSCP (Equation 6):

TANOVA ZZ(yu y) —Z(y| y) = TMCRA (45)

j=1i=1
Finally, it can be shown that SSw = S«(1-R?) and SSs =
SeR?. For brevity, only the first equality will be

demonstrated (the second one can be found in a similar
fashion). For the same reason, it is assumed that the data
have been standardized; the constant effect is removed (in
other words, b* will equal b and X* will equal X). This is
demonstrated mathematically as:
=X @)
=@-N'G-y)
=9y -29"y+y'y
Substituting Equation 18 into Equation 46 gives:
SS,, =b"(X"X)b—-2b"(XTy) +y"y
Substituting Equation 21 into Equation 47 gives:
SS,, =Y X(XTX) T (XTX)(XTX) ' XTy
=2y X(X"X)H(XTy) +yy
=y X(XX) ' (XTy) +yTy
=yTy -y XXX) XY Y)Yy
= L=y XXX XYY Y)Y
=(1- ScpSp;SpcSCC )Se
=(1-R)S,
Consequently, to perform ANOVA, the same steps are
followed as before for MCRA: the SSCP matrix is computed,
followed by R-squared and the F-value. This F-value will be

(46)

(47)

(48)

identical to the one found performing an ANOVA. Figure 1b
illustrated the variability given by the dependant variable

Table 3. Data illustration for simple k groups ANOVA

y11 y12 ylk
y21 y22 y2 k
yn1 1 yn2 2 ynk k
% Y
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(Y) and the condition (C) while Tables 4 shows the standard
ANOVA and MCRA summary table, respectively. Thus, if a
given ANOVA table is provided, it is easy to obtain the R-
squared from it:
R? - SS; _1-S§,
SS; SS;
Although ANOVA is an MCRA, a different terminology is
used to describe the ANOVA outputs. In ANOVA, the R-
squared is called eta-square (7° =R?) and the shrunken R-
squared called (e2=R?%).
ANOVA'’s omega-square (®”) can also be computed from
MCRA alone:
W = SS; — (k—1)MS,,
SS; + MS,,

Square partial and semi-partial coefficients are also

(49)

is epsilon-square Finally,

C1-k-(1-n)R?

1-k+n-R?

(50)

computed the same way as before. However, their outputs
and interpretations will vary according to the type of coding
matrix chosen. In dummy coding, the square semi-partial
coefficient is interpreted as the proportion of variance due to
i-k dichotomy, and for the square partial coefficient, it is the
proportion of variance due to i-k dichotomy excluding other
effects. In effects coding, the square semi-partial coefficient
is interpreted as the proportion of variance due to i’s effect,
and for the square partial coefficient, it is the proportion of
variance due to i’s effect excluding other effects. Finally, for
contrast coding, the square semi-partial coefficient is
interpreted as the proportion of variance due to the it
contrast, and for the partial coefficient, it is the proportion of
variance due to the i contrast excluding other contrasts.
Naturally, for each type of coding significance, testing can
be applied for both partial and semi-partial coefficients.
However, since the k' coefficient is not readily available
from the regression coefficient, it must be determined by the
other analysis results. Consequently, the F value for the ktt
coefficient is obtained by the following:

i

Fo= ( (51)
k - 1 P
=1
with df =1, n-k-1 where §y is defined as:
s2(1-R?*)n
§=Lt—— 52
Y n-k-1 (52)

From Equation 51, the semi-partial and partial coefficients
can be obtained by:

2
sr? _Ra-RY) (l_llj ) (53a)
r. = Sign(b, )+/sr? (53b)
pr = —— (54a)

F +n-k
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Table 4. ANOVA Summaries using standard equations and MCRA equations

Source of Sum of Squares Mean Square
L Degrees of freedom (df) F
variation (SS) (MS)
k — =

peteen zk 1nj(7j -X)? k1 zj:1 n; (X -X) MSgauen
<>): group I= k-1 MS, i
% A
- g Within z z (X _ 2 nk Z —12 ()ﬂ,
5 rou; j=1 i
g 3 group n-k
g
n k n; =\2

Total > s D0 =X) n-1
. Between s R? k-1=p SOCRZ R?(n—p-1)
g é group e p 1- RZ) p
2> Within . S (1- R?)
§ %O group SCC (1_ R ) n-k= ﬂ-p—l ﬁ
0g p
% Total S, n-1
o= Sign(bk)\/ pre (54b) Again, with an appropriate coding matrix, it is possible to

If necessary, posthoc comparisons can be performed on the
data using the standard methods. Some computation can be
simplified using the equality between the MS» and MCRA.
Generalization to more than one factor (factorial ANOVA) is
straightforward, as is shown in the next section.

Factorial ANOVA

For brevity, only a two-level factorial analysis will be
considered. Of course, this can be extended to more than 2
factors. In factorial ANOVA each score is subject to a base
mean (L), some error (eik), and hopefully some effect due to
one (¢) and/or two (f3) factors and/or their interaction ().
This is described by the following equation:

Vik = H+a + B +aff; + ey (55)

Table 5. Effect coding matrix for two-level factorial ANOVA

represent this situation in MCRA terms:
y=X'b"+e (56)

where, for example,

b* = [/l,0!1,062,...,(mel,ﬂl,ﬂz,...,ﬁnfl,(aﬂ)n,((Zﬂu),...,(aﬂ)m,ln,l].r ’

X* represents the predictor matrix obtained from the coding

matrix, m represents the number of groups for treatment ¢,

and 7 represents the number of groups for treatment /.

The coding matrix is not very different from those
defined in the previous section. This matrix is constructed
by building one coding matrix for each effect (& and f), then
multiplying each column of the first factor with each column
of the second factor to give the interaction coding matrix
(af). Effect coding is shown in Table 5. Although effect
coding was used, this can be done with any other type of

coding, including any type of mixed coding
(e.g. o contrast; £ dummy). From that matrix,
all needed information can be obtained using

@ B af the same equations illustrated by Figure 1c. In

XXn o XX X Xhin2 this case, the total explained variance is the sum

Group X X Xoa X Xpa Xoen2  Xnsnat  Xuen Xon_1 of the three areas (R? = atb+i), a relationship
SB 10 0 o - 0 1 0 0 formally expressed by:

af, 0 1 - 0 1 0 - O 0 0 0 R*=RZ+R;+RZ, (57)

: o Poor : : : : Thus, each R’ «can be computed

wf 1 -1 -1 1 0 0 -1 0 0 independently by partitioning the coding

s, 10 0 0 0 0 0 matrix into functions of each effect. Like in

ap 0 1 0 0 0 0 0 standard factorial ANOVA, F values for the

: : : main effect (¢ and f) will be a function of the

af, -1 -1 -1 -1 -1 -1 1 1 1 type of effect presented in the study: for



Table 6. Factorial ANOVA summary using MCRA
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Source of variation Sum (22 z?uares fziif: ((;;) Mea(r;\/I S;q)uare F
Between SLR? k1 SSs/dfs MSs/MSw
a SR’ k1 SSdf, MS J(MSw or MS )
B S<R; ky1 SSldf, MS 4(MSw or MS,)
op S«R%s (k1) (ks 1) SSsldf.p MS ,,/ MSw
Within S.(1-R? n-k SSwidfw
Total S n-1
random effects the F value will be the mean square of the 1096 4.92 496 3 27.00
main effect divided by the interaction mean square; while SSCP - 492 1183 492 i 110.00
for the fixed effect the F will be the mean square of the main jl.96 492 1096 | 127.00

effect divided by the within-groups mean square. Table 6

shows the factorial ANOVA summary using MCRA.
Sometimes, the summary table includes partial eta-

square (ANOVA terminology). This information can be

27 110.00 127.00 (4538.06

This is partitioned (Equation 6) to give R?> (Equation 7),
resulting in:

01256 -0.035 —0.041][ 27
obtained from the MCRA outputs: . R?=[27 110 127] -0.035 0114 -0.035||110 [0.0002]
partial 7? = partial Rf:W‘R2 (58) -0.041 -0.035 0.126 ||127|

where i represents the type of effect (¢, f or af). Usually,
when the interaction is found to be significant, then simple
effects are analyzed. This is done in similar fashion as in
one-way ANOVA; thus using coding matrices.

Numerical example of one-way ANOVA performed with MCRA

In order to put into practice the theory explained in the
preceding sections - and thus facilitate its comprehension -
let us present a numerical example. In this fictitious case,

=0.45
The R’ (or &), using Equation 9, gives:
5 _q (1-045)24-1)
(24-3-1)
Thus, 36% of the variance in the classification performance is
due to the variation of the different groups (A, B, C and D).
And the @ is obtained by Equation 50:

=0.36

Table 7. Data used for the numerical example

there are 4 types of nonlinear models (A, B, C, D) that were A B C D
tested on a given classification task. The data are given in 85 95 81 64
Table 7. In this example, since there is no particular group, 60 78 86 74
nor any interesting grouping properties, effect coding (Table 75 72 79 45
3) is used. The coding matrix is thus given by: 45 74 88 51
Group | X, X, X 79 68 90 65
A 1 0 0 55 91 75
B |0 1 0 77
c 0 0 1 Mean 66.50 79.29 83.17 59.80
D |1 -1 Standard 1554 1000 578 1165
deviation (SD)
From this matrix, we learn that the M matrix (Equation 3) is Grand Mean 73
given in the first column of the first matrix in the Appendix. Grand SD 14.05

Using M, the SSCP matrix (Equation 4) is then:




Table 8. Summary of ANOVA using MCRA
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Source of Sum of Squares Degrees of Mean Square F Prob
varjation (55) freedom (df) (MS) '
Between group 2021.44 3 673.813 5355 0.0072
Within group 2516.56 20 125.828
Total 4538 23

2 1-4-(1-24)045
1-4+24-0.45
The F value for the R? is given by Equation 14:
_045(24-3-1)
(1-0.45)(3)

Results found using Table 4 are summarized in Table 8.

=0.35

Regression weights can be obtained from Equation 21:
b*=[72.19 -5.69 7.10 10.98]

Thus, the constant (b; ), 72.19, is the same as the unweighted
grand mean. The remaining vector elements are the distance
between each group average and this value. The regression
coefficient for the last group (D) can be obtained using
Equation 31:

-5.69

710 [[-1 -1 -1]=-12.39

10.98

b: =

The square semi-partial and partial coefficients for the
first 3 groups are obtained using Equations 11 and 13
respectively. Their F value can be found using Equation 15.
For the last group (D), its F value in calculated with
Equation 51, and its (square) semi-partial and partial
coefficients are given by equations (53a) 54b, and (54a) 55b,
respectively. All of these results are summarized in Table 9.
Interpretations for the third group (C) are given as follows.
An sr3?2 of 0.212 indicates that 21% of the variance for the
classification task can be accounted for by the distinction
between the C and the 3 remaining algorithms (A, B, D). In
other words, about 21% of the variance for the classification
task is explained by the “eccentricity” of the C algorithm.
The sign of sr, is positive, indicating that its distinction is
that of the grand mean. A pr =0.276 indicates that about
28% of the variance can be explained by the C algorithm,
excluding the “eccentricity” the remaining groups (A, B, D.
The sign (+ or -) of pr, indicates the direction of the relation:

Table 9. Summary of partial and semi-partial analysis

in this case it is positive (above the grand mean). The
difference between the grand mean and the C’s mean (10.98)
is statistically significant (F = 7.63, p = 0.01). Interpretations
for the remaining groups are similar. Finally, if posthoc
comparisons are done, they can be performed in the way
standard for ANOVA.

The last topic is the repeated measures ANOVA (or
matched subject design). In this context, the computation
involved is slightly different.

Repeated measures ANOVA

This section presents a simple case of repeated measures
subjects by conditions, which can be generalized to more
complex design. For example, Chartier & Cousineau (in
press) described a two-factor mixed design (split plot)
constructed using GLM approaches.

For the simple case of repeated measures, the

participant’s score is coded as follows:

Yu Yoo o Ve
Y = y;n y;22 yzzc (59)
Yoo Yo v Yee

where n represents the number of subjects and ¢ the number
of times a subject is measured. Variance partitioning for the
subjects by condition is illustrated in Figure 1d. Thus, total
variation of the criterion, Y (not to be confused with
Equation 59), is composed of two sources: the between-
subject variation (b), and the within-subject variation (ate).
The purpose of the analysis is to determine if the ratio a/e is
significant. To do this, variation between subjects ( R? ) must
first be estimated, and then removed from the total
variation. This estimation is the ratio of the discard
condition variation (s2) in relation to the total variation

(s)):

s, Sl’i 2 prlz F Prob
A -0.238 0.057 -0.305 0.0930 2.047 0.166
B 0313 0.098 0.387 0.150 3522 0.073
C 0460 0.212 0.525 0276 7.627 0.011
D -0.477 0.228 -0.540 0.291 8216 0.009




Table 10. Repeated measure ANOV A summary table using MCRA
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. Sum of Squares Degrees of Mean Square
Source of variation ) freedom (df (MS) F
Within Subjects S, R? n-1
, S R’ (n-DR
Between (B) SCCRC c-1 c —1C (- Ré - Rsz)
o 2 2 scc (1_ Ré — RSZ)
Within (W) Sec(1-RE—RY) (c-1)(n-1) c—D(n-1
Total S cn-1
, Si . - ) 7. -) general coding matrix is then expressed as:
R? = G e (60) Condition | x, X,

y cc
where S represents the sum of squares of the criterion,
and y represents the mean vector. y, is defined as follows:

SV,

tvi i=1
y, ="
s c

(wheres =1, 2, ..., n) ¥, is thus the average vector of the Y

(61)

column. Therefore, information about the conditions is
discarded.

Now that the between-subject variation (R?) has been
estimated, it is possible to compute the ratio a/e. The
estimation of “a” (RZ2), is made by discarding the repeated
measure information (all groups are treated as
independent), and then using a standard coding matrix (e.g.
Table 2) for one-way ANOVA (Figure 1b). The number of
observations is (in that case) c*n and the number of groups
remains c. It is now possible to estimate the error (“e”).

Figure 1d shows that e = 1-(a+b), which is formally:

e=1-(RZ+R?) (62)
Once this is found, the F ratio is modified accordingly:
2
R (n-1) (63)

TR R
(with df = c-1 and (n-1)(c-1).
Table 10 shows the repeated measure ANOVA using
MCRA.

Numerical example of repeated measures ANOVA performed with
MCRA

In this fictitious example, 10 participants have been
selected for a study about chess playing performance when
trained in using the “checkmate” strategy. All participants
were tested before (pretest), after (posttest) and 2 months
later (follow-up). The data are given in Table 11 as are the
means for each of the 3 tests. For the analysis to take place,
three F ratios must be found: group, condition and
interaction effects.

To start, subject variations (condition) are computed. The

Pretest
Posttest
Follow-up

From the condition coding matrix, the M matrix (Equation 3)

is given in the second column of the Appendix. Using M, the
SSCP matrix (Equation 4) is then:

10 5

SSCP=| 5 10

which is partitioned (Equation 6) to give R (Equation 7):
RZ=0.88

For the group effect, ¥, must be computed following

Equation 61:

3

Y,

yszizlg' =[754 776 756 738 752

Finally, R? is obtained from Equation 60:

S (7. -y) (.-
R2:¢ (ys y) (ys y)C_ 719 ><3=00454

ST s T 47483

y cc

From those results, the F-ratio (Equation 63) can be obtained:
R 0.88

F=— ¢ _(n-)=———"
1—R§—R§( )= 1=0.0454—0.88

(5-1)=47.441

All the results are summarized in Table 12

Table 11. Data used for the repeated measures
numerical example

Moment
Pretest Posttest Follow-up
705 73.9 81.7
720 77.4 83.3
68.9 76.5 81.4
644 73.0 84.1
702 75.2 80.1
Mean 69.2 75.2 82.12
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Table 12. Repeated measures ANOVA summary table using MCRA

Source of Sum of Squares Degrees of Mean Square F
variation (SS) freedom (df) (MS)
N N 2 _
Within SR =474.83x 00454 o5 1
Subjects =01.563
(n-DR:
2 1_ RZ _R2?
S, R?=474.83x0.88 S.Re _418.021 @-R.-R)
Between (B) ® 118021 c-1=3-1=2 c-1 3-1 _ (5-no.88
e =209.011 (1-0.88—-0.0454)
=47.4413
2 2
S.(1-RE —RY) -Dn-p=2x4 Sl X R)__BB
Within (W) =474.83(1-0.88-0.0454) -8 (€-2(n-1) ) i 456)( -9
=35.25 o
Totl 5. —474.83 cn-1=3x5-1
=14
CCA approach has the advantage of covering both
Discussion

Since it has been shown that ANOVA and MCRA are the
same analysis, we can treat every quantitative method as
part of the same module — rather than seeing them as
separate, they can be seen as variations of MCRA. In fact, the
only things needed to accomplish the different ANOVA
procedures (one-way, two-way, repeated measures,
covariance, etc.) are the appropriate coding matrices. Using
the proper coding matrix, the SSCP matrix and the R?can be
computed. Coding matrices have the advantage of
encouraging the researcher to think about the type of
hypothesis he wants to verify before any analysis is
performed.

Since the purpose of this paper was to show the link
between ANOVA and MCRA, some analyses were left aside
(e.g. confidence intervals, power, standardized weights, etc.).
Concerning power, Chartier & Allaire (2008) present this
concept as applied to the multivariate scheme. Although
some interesting properties of special cases (e.g. when all
groups have an equal number of subjects) were left aside for
brevity, more information can be found in Cohen and Cohen
(1983). Analysis of covariance (ANCOVA) has not yet been
covered, as it is a mix of continuous and nominal
independent variables. This analysis can be performed in the
way described in this paper, using the coding matrix shown
in Table 13 Also, note that this paper considered only the
full model.
hierarchical and nonhierarchical) can be done using model
selection (e.g. Hélie, 2006; McCullagh & Nelder, 1989).

MCRA is not the most generalized method one can use.

However, testing of partial models (both

Generalization to multivariate cases is done through
canonical correlation analysis (CCA; Thompson, 1984).
Multivariate and univariate cases are described in Table 1. A

multivariate analysis of variance, and methods dealing with

latent  variables  (principal = component  analysis,
multidimensional scaling, structural equation modeling,
etc.). This analysis and its different links, however, are
beyond the scope of this paper.

In addition, only linear methods have been presented.
However, extension to generalized linear models (GLZ) (e.g.

McCullagh & Nelder, 1989) can take into account nonlinear

requirements:
y=X'b* (general linear model) (64)
f(§) =X'b" (generalized linear model) (65)
where f(e) is called the link function. From this

generalization, the GLM is no longer tied to the normal
distribution, but is open to other distributions (Poison,
Binomial, Gamma, etc.). For example, when ¥ is binary, the
associated distribution is generally Binomial. In this case,
logistic regression can be done using the following link

16)-tog ;)

Or, if ¥ can be counted, the associated distribution is

function:

(66)

generally Poisson. In this case Poisson regression can be
done using the following link function:
f(9)=log(9)

Generalized linear models could, however, be the subject of

(67)

another paper.

Conclusion

This paper has shown that performing one-way,
factorial, repeated measure ANOVA is no different from
standard MCRA. To perform the various analyses, including
ANCOVA, we need only the appropriate coding matrix (this
varies as a function of research objectives). From that coding



Table 13. Effect coding matrix for ANCOVA
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a af
Xlxﬂ'l X1Xm+1 Xrn—lxrﬂ+n—2
GI’OUp Xl XZ mel Xm )gwrl ‘m+n—2 )§n+n71 )gn+n anfl
alﬂl Cis Co Gy 1 0 Cimin2 Cimin-t 0 0
ap G Cy2 Coma 1 0 0 0 0 0
am@ Cm,l Cm,2 e Cm,mfiL 1 O 0 Cm,m+n71 0 0
alﬂz Coitr Coaz 7 Chuima 0 1 0 0 0 0
azﬂz Coizz G2z 7 Ghizma 0 0 0 0 0
amﬂn le’l 1 Cﬂ'lﬂ 2 T Crnn‘m—l _1 _1 _1 _le'l ,m+n-1 _Cmn ,m+n o _Cmn‘mn—l

matrix, the SSCP matrix and the R-squared can be obtained,
which are all that are needed to complete the ANOVA'’s
summary table. Therefore, MCRA has a clear advantage
over ANOVA, as it presents statistics as a whole, which
would prevent the terminology confusions, and knowledge
fragmentations that are so commonly seen in today’s
students.
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Appendix: M matrices for the numerical examples

One-way ANOVA Repeated measures ANOVA

example example
1 0 0 8 1 0 702
1 0 0 60 1 0 72
1 0 0 75 1 0 689
1 0 0 45 1 0 644
1 0 0 79 1 0 702
1 0 0 55 0 1 739
0 1 0 95 0 1 774
0 1 0 78 M={0 1 765
0 1 0 72 0 1 73
0 1 0 74 0 1 752
0 1 0 68 -1 -1 817

M = 0 1 0 9 -1 -1 833
0 1 o0 77 -1 -1 814
0 0 1 81 -1 -1 841
0 0 1 86 -1 -1 80.1]
0 0 1 79
0 0 1 88
0 0 1 9
0 0 1 75
-1 -1 -1 64
-1 -1 -1 74
-1 -1 -1 45
-1 -1 -1 51

-1 -1 -1 65
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